
Build & Release
How It’s Done

05.31.24 Wayne Mery — Release Manager, Daniel Darnell — Build Engineer

1. The Pre-Release Process

2. The Release Process

3. The Post-Release Process

4. Summarized Timeline

5. Links and Further Reading

Table of
contents

4 Taskcluster
Task execution framework
used to build and release
Thunderbird

5 Treeherder
Web interface for
Taskcluster job steps

6 Ship-It
Web app used to create
releases from a given build
using Taskcluster

1 Release Channel
Used to determine which
release train you receive
updates from (Daily, Beta,
Release/Monthly, ESR)

2 Balrog
Web app used to control
release sign-offs and
update rates for each
release channel

3 CDN
Content Distribution
Network – Network of
servers that efficiently
distribute Thunderbird
updates to users

Helpful
Terminology

7 Smoke test
Manual tests to verify that a
build is ready for delivery to
users

8 Uplift
Another term for backport,
which is the process of
applying a specific software
patch from a newer version
or channel to an older
version or channel

1.1 Uplifting New Bugs

1.2 Writing Release Notes

1.3 Release Cadence

The Pre-
Release
Process

On or before the release date
of a beta or ESR, patches
approved for a release channel
are grafted into the
appropriate branch

• If a patch cannot be
merged cleanly or with a
simple 3-way merge
correction, a patch revision
is requested from the
author

Uplifting Approved
Patches

After Uplifts
The newly-updated branch of
Thunderbird is versioned for a
new release

• The branch is pinned to the
newest corresponding
version of Firefox

• Either automatically or
manually, the version number
is updated

• Links to each uplift on the
new branch are posted on
bugs included in the release

How new patches get from Daily to Beta, ESR, and Release

Uplifting New Bugs

Uplift Request
Uplift is usually requested by
the patch author

• Request is assessed and
approved/denied by
release manager

•If a patch needs to be
modified for a different
release channel, a modified
patch is requested from the
author

How Notes are Written
Notes are ideally written to be informative but
accessible to all users

• Describe the problem succinctly and in passive
voice

• Organize the notes by various traits (from most
to least important)

• Type - new, changed, or fixed

• Area - mail (and news), address book, chat,
calendar, or user interface

• Feature - IMAP, CalDAV, global search, etc.

How Release Notes are Picked, Written, and Organized

Writing Release Notes

When Notes are Written
Several factors determine whether release notes
are written

• Does the bug impact end users?

• Is the bug a strictly internal change?

• Is the bug routine upstream synchronization?

How often each release channel sees a new release

Release Cadence

Release channels each get updated at different intervals:

• Beta – Roughly twice a week

• Merged once per month from daily

• Release – Once per month, with subsequent point releases for approved bug fixes

• Merged once per month from beta

• ESR – Once per year, with subsequent releases for approved bug fixes

• Merged once a year from beta

2.1 Life Cycle of a Release Candidate

2.2 Testing a New Release

2.3 Merge Day

The
Release
Process

Pushes the newly-promoted
build to the CDN, all but
releasing the candidate

• Build is now available on
FTP as a new release

• Release notes are made
public

Pushing Shipping
Ships a release to the public

• Files are copied from the
"candidates" directory to the
"release" directory

• The release channel rule in
Balrog is updated for the new
release

• Builds must be signed off
by release engineer and
release manager

• This allows regular users to
get a small download the
release as an update

How a build becomes a release candidate, and becomes a release

Life Cycle of a Release Candidate

Promoting
Takes a build and creates and
signs release candidate for
smoke testing

• Builds L10n (and langpacks)

• Build is pushed to candidates
directory of FTP and to
“*-localtest” update channel

• This is how smoke testers
acquire the build

• Email is sent to appropriate
lists with release notes

Checking Documentation
If a candidate passes smoke testing, release notes
and security advisories are checked for public
availability and accuracy

How new candidates are tested

Testing a New Release

Smoke Testing Email
Smoke testers are notified that a new candidate
is available to test

• Testers acquire build from
“<channel>-localtest” release channel or FTP

• Once tested, results are sent back to release
manager

• Betas are usually shipped and released
same-day, while ESR receives more testing
prior to shipping

The “from” branch is merged
into the “to” branch using build
automation

• A dry run is performed first
to detect unforeseen
issues

Perform Merge Open Trees and Release
If all goes well, the trees are
reopened and the new release
proceeds as a normal release

• Major version number of
branch is increased

• Message is sent notifying
lists that the merge has been
completed

What happens when we need to sync branches (daily to beta, beta to ESR, etc.)

Merge Day

Close Trees
The trees of the branches
being merged from and
merged to are closed to
prevent changes

• Email is sent out to keep
relevant mailing lists
apprised of merge
progress

3.1 Monitoring Release Feedback

3.2 Common Complications

The Post-
Release
Process

How feedback is gathered and potential issues are recognized

Monitoring Release Feedback

Various feedback and metrics are followed after a release to see what is being reported and
determine if something needs to be done about potential issues:

• Crash rate of new release

• Newly-filed bug reports

• Support requests at https://support.mozilla.org/

• Distro (Linux) feedback

• Social venues (reddit, mastodon, etc)

• Channel support group at https://thunderbird.topicbox.com/groups/beta

• https://stats.thunderbird.net/

• https://support.mozilla.org/kb/thunderbird-beta

https://crash-stats.mozilla.org/home/product/Thunderbird
https://support.mozilla.org/
https://thunderbird.topicbox.com/groups/beta
https://stats.thunderbird.net/
https://support.mozilla.org/kb/thunderbird-beta

What can go wrong and how we remediate it, and other fun things

Common Complications

Zero Days
… is when Thunderbird or
Firefox team identifies an
active threat - “in the
wild”, highly rated
security issue - which
needs immediate fixing. In
such cases we attempt to
develop a patch, test,
build and ship within 24
hours.

Merge Conflicts
When a patch is written
on top of a particular
branch of Thunderbird, it
may not merge cleanly
with other branches. In
simple cases, the merge
conflict is resolved by
hand. For more complex
merge issues, the patch
must be revised by the
author.

Build Failures
If a build fails because of
a simple server issue
when running a task
(HTTP 500), the task is
simply rerun. Otherwise,
the issue is assessed and
a patch may need to be
modified then re-uplifted.
This requires a new build.

Canceling Builds
If a build candidate turns
out to be non-viable for
release, the release
process must be
canceled. In this case, the
current phase of release
is halted (if needed), and
the release is deleted
from Ship-It.

Common Complications

Balrog “Disable Updates
may be used quickly stop
all updates (both manual
and automatic), no sign
off required.

Emergency stop
of updates

More of what can go wrong and how we remediate it, and other fun things

Common Complications (cont.)

Balrog is used to adjust
update rate for desired
objectives, or to even
completely disable
automatic updates.

We also prevent updates
for OS versions which are
EOL.

Adjust update
rate for special
conditions

1 (relman) Prep: ensure security advisories are prepared,
assess channel’s current quality and future needs, seek
needed patches, evaluate and approve appropriate patch
uplift requests, (releng) build/CI fixes and improvements

Summary
Timeline

2 (releng) Apply approved patch uplifts, or do a merge
(close trees, perform merge, open trees),

3 (releng) Pin to newest corresponding version of Firefox,
set Thunderbird version number, update bugs with patch
uplift information, write draft release notes

4 (relman) Use Ship-it to create new version for Taskcluster
and promote the build, (releng) fixes anomalies as needed

5 (relman) Inform smoke testers of available candidate
build, (testers) exercise build, (relman) assess feedback

releng = Release Engineering relman = Release Manager

6 (relman) Push build to CDN, (releng) fix any anomalies

7 (relman) Ship release, set Balrog update rate, (security)
make advisories live, (releng) make release notes live

8 (relman) Monitor release feedback/health, seek
corrections in case of poor health, adjust update rate

● Download Channels: ESR, Beta, Daily, default release

● Thunderbird’s release and events calendar (closely follows

the Firefox release schedule)

● Thunderbird Release Notes

● Thunderbird CI Docs

● Treeherder

● Thunderbird statistics

● Thunderbird crash statistics

Links and Further Reading

https://www.thunderbird.net/download/esr/
https://www.thunderbird.net/download/beta/
https://www.thunderbird.net/download/daily/
https://www.thunderbird.net/download/
https://calendar.google.com/calendar/ical/c_f7b7f2cea6f65593ef05afaf2abfcfb48f87e25794468cd4a19d16495d17b6d1%40group.calendar.google.com/public/basic.ics
https://whattrainisitnow.com/calendar/
https://www.thunderbird.net/en-US/thunderbird/releases/
https://jfx2006.github.io/thunderbird-ci-docs/
https://treeherder.mozilla.org/jobs?repo=comm-central
https://stats.thunderbird.net/
https://crash-stats.mozilla.org/home/product/Thunderbird

Thank you!

